œ_#ÁÕ§TE NAŒ“KeÉ:”(åŽÖJÞùY’‚ñùž7; «]Û ý`8g“¯B© jdÖÖ¸ðzœ¸¦4Ç3Kó^(ÍÖ¼ Õ€pvìwšõB4df$Èü^0˜…åÌC$#2FŽÑ§±¦ÛZ/÷š&m£ñzÒÖ ’.Î]!Î;ƒ(Õ–¢d/—#Kª+tZyuÏB>NÛÖ†(¸ŒSà'³„Y˜´-_•¦¼´˜OlNK§¶ÒàŠˆTHµƒeTPå·fïM’…þuÏÍüp6دªE£åü‡ZØ'CKF#â«;‹eyO Qp„†l"ö1èíÙP ÏŒúl! BÝ2ñª•_VÁÉ÷3eu`–F¸ìI--ö<¿žë¯4õ캿¢)34Å{wMÉ2ÆÖFŸ¥`e9Ú¶¸P‡.”FÔï rY ‚²ÈTB,{ÛœéJ}«àQ4¹0Rû4D‚B§S‘ dO•v¾„™Sן¯3FeŸ™«+ÓâwH dÕÛÌì·P4ë&¥#rÜÉ Ù¦ê†ý·xòqk¯2,¹§™E\ék‚×Sá”ÚºÙ⺷ö£6…à ʾ qSá³Å|;àû}4Ÿ($â¹VY~óÍ!èÜÒŒËX½Ù1j‚VíÍŸš³+œ]«½g{_{/vµ½\¢¶vÉWKÿ:ñám½ ¥ S²x‘t ŽšÝÙÿÀÇ^ný PK IW™k‚½÷ á _rels/.relsUT dìd dìd dìd’ÏNÃ0‡ï{ŠÈ÷ÕÝ@¡¥» ¤Ý*`%îÑ&QâÁöö‚J£ì°cœŸ¿|¶²ÙÆA½rL½wVE Šñ¶w†çúay * 9Kƒw¬áÈ ¶ÕbóÄIîI]’Ê—4t"á1™ŽGJ…ìòMããH’±Å@æ…ZÆuYÞ`üÍ€jÂT;«!îì T}|Û7MoøÞ›ýÈNN<|v–í2ÄÜ¥ÏèšbË¢Ázó˜Ë )„"£OÏ7ú{ZYÈ’yÞç#1'tuÉM?6o>Z´_å9›ëKÚ˜}?þ³žÏÌ·N>fµx PK IWª½e ¢ U € word/document.xmlUT dìdPK IWþË3” z €J¢ word/settings.xmlUT dìdPK IWC‡{š' ƒ €¤ docProps/custom.xmlUT dìdPK IW츱=Œ €‡¥ [Content_Types].xmlUT dìdPK IWV%ë±" €U§ docProps/app.xmlUT dìdPK IW€RŒ 3 €¶¨ docProps/core.xmlUT dìdPK IWkòDn ô €ª word/_rels/document.xml.relsUT dìdPK IW;$î €Î« word/fontTable.xmlUT dìdPK IW+åäz] ÷. €ý¬ word/numbering.xmlUT dìdPK IW¤2×r- ¿ €›° word/styles.xmlUT dìdPK IWMFÒ ø €´ word/header1.xmlUT dìdPK IWF— T e €· word/media/image1.jpegUT dìdPK IW!Yéáå €°Ë word/media/image2.pngUT dìdPK IW°Àºë ú €ÙÌ word/media/image3.pngUT dìdPK IW$“†ª L €Î word/footer1.xmlUT dìdPK IWzaGôM €ñÑ word/footer2.xmlUT dìdPK IW–µâº P €}Õ word/theme/theme1.xmlUT dìdPK IW™k‚½÷ á €{Û _rels/.relsUT PK ! bîh^ [Content_Types].xml ¢( ¬”ËNÃ0E÷HüCä-Jܲ@5í‚Ç*Q>Àēƪc[žiiÿž‰ûB¡j7±ÏÜ{2ñÍh²nm¶‚ˆÆ»R‹ÈÀU^7/ÅÇì%¿’rZYï @1__f› ˜q·ÃR4DáAJ¬h>€ãÚÇV߯¹ªZ¨9ÈÛÁàNVÞ8Ê©ÓãÑÔji){^óã-I‹"{Üv^¥P!XS)bR¹rú—K¾s(¸3Õ`cÞ0†½ÝÎß»¾7M4²©ŠôªZÆk+¿|\|z¿(Ž‹ôPúº6h_-[ž@!‚ÒØ Pk‹´2nÏ}Ä?£LËð Ýû%áÄßdºždN"m,à¥ÇžDO97*‚~§Èɸ8ÀOíc|n¦Ñ äEøÿöéºóÀBÉÀ!$}‡íàÈé;{ìÐå[ƒîñ–é2þ ÿÿ PK ! µU0#ô L _rels/.rels ¢( ¬’MOÃ0†ïHü‡È÷ÕÝBKwAH»!T~€Iܵ£$Ý¿'TƒG½~üÊÛÝ<êÈ!öâ4¬‹;#¶w†—úqu *&r–Fq¬áÄvÕõÕö™GJy(v½*«¸¨¡KÉß#FÓñD±Ï.W ¥†=™ZÆMYÞbø®ÕBS톰·7 ê“Ï›×–¦é ?ˆ9LìÒ™ÈsbgÙ®|Èl!õùUSh9i°bžr:"y_dlÀóD›¿ý|-NœÈR"4ø2ÏGÇ% õZ´4ñËyÄ7 ëÈðÉ‚‹¨Þ ÿÿ PK ! Q48wÛ — xl/workbook.xml¤UÙnâ0}iþ!cñ‡ *–¢AšVU×$dC¬&vÆv UÕŸë@XÊK§/¹p|Žï¹N÷b“¥Ö •Š ÞC¸î"‹òHÄŒ¯zèá~b·‘¥4á1I§=ôJºèÿüÑ] ù¼âÙ ®z(Ñ:GE ͈ª‹œrˆ,…̈†©\9*—”Ä*¡Tg©ã¹nàd„q´Eåg0ÄrÉ":Q‘Q®· ’¦D}•°\UhYô¸ŒÈç"·#‘å ±`)Ó¯%(²²(œ®¸d‘‚ì nZ w v¡ñª• t¶TÆ")”Xê:@;[Ògú±ë`|²›ó=ø’ïHúÂL÷¬dðEVÁ+8€a÷Ûh¬Uz%„Íû"ZsÏÍCýî’¥ôqk]‹äù5ÉL¦Rd¥Dé˘i÷P ¦bM/|dÉ",…¨çãFNoçiûéë>aêiçsó#ðÄ ÕTr¢éHp ÜIú®ÝJìQ"ÀÜÖ-ý[0I¡¦ÀZ Z…d¡nˆN¬B¦=4 g %PDF-1.4 %âãÏÓ 3 0 obj << /Linearized 1 /L 422775 ÿØÿà JFIF ÿÛ C ÿÛ C ÿÀ X" ÿÄ ÿÄ H !1A"Qaq2‘¡#±ÁBRÑ3Cbrá$S‚¢²ð4ñ%6DTc’ÂsÿÄ ÿÄ = !1AQ"aq‘Á2R¡±BÑð#3br’²4á$‚¢ÂñÿÚ ? áHBßÝ`„! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! ! stream
######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Universal charset detector code.
#
# The Initial Developer of the Original Code is
# Netscape Communications Corporation.
# Portions created by the Initial Developer are Copyright (C) 2001
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
# Mark Pilgrim - port to Python
# Shy Shalom - original C code
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301 USA
######################### END LICENSE BLOCK #########################
from .charsetprober import CharSetProber
from .enums import CharacterCategory, ProbingState, SequenceLikelihood
class SingleByteCharSetProber(CharSetProber):
SAMPLE_SIZE = 64
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
POSITIVE_SHORTCUT_THRESHOLD = 0.95
NEGATIVE_SHORTCUT_THRESHOLD = 0.05
def __init__(self, model, reversed=False, name_prober=None):
super(SingleByteCharSetProber, self).__init__()
self._model = model
# TRUE if we need to reverse every pair in the model lookup
self._reversed = reversed
# Optional auxiliary prober for name decision
self._name_prober = name_prober
self._last_order = None
self._seq_counters = None
self._total_seqs = None
self._total_char = None
self._freq_char = None
self.reset()
def reset(self):
super(SingleByteCharSetProber, self).reset()
# char order of last character
self._last_order = 255
self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
self._total_seqs = 0
self._total_char = 0
# characters that fall in our sampling range
self._freq_char = 0
@property
def charset_name(self):
if self._name_prober:
return self._name_prober.charset_name
else:
return self._model['charset_name']
@property
def language(self):
if self._name_prober:
return self._name_prober.language
else:
return self._model.get('language')
def feed(self, byte_str):
if not self._model['keep_english_letter']:
byte_str = self.filter_international_words(byte_str)
if not byte_str:
return self.state
char_to_order_map = self._model['char_to_order_map']
for i, c in enumerate(byte_str):
# XXX: Order is in range 1-64, so one would think we want 0-63 here,
# but that leads to 27 more test failures than before.
order = char_to_order_map[c]
# XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
# CharacterCategory.SYMBOL is actually 253, so we use CONTROL
# to make it closer to the original intent. The only difference
# is whether or not we count digits and control characters for
# _total_char purposes.
if order < CharacterCategory.CONTROL:
self._total_char += 1
if order < self.SAMPLE_SIZE:
self._freq_char += 1
if self._last_order < self.SAMPLE_SIZE:
self._total_seqs += 1
if not self._reversed:
i = (self._last_order * self.SAMPLE_SIZE) + order
model = self._model['precedence_matrix'][i]
else: # reverse the order of the letters in the lookup
i = (order * self.SAMPLE_SIZE) + self._last_order
model = self._model['precedence_matrix'][i]
self._seq_counters[model] += 1
self._last_order = order
charset_name = self._model['charset_name']
if self.state == ProbingState.DETECTING:
if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
confidence = self.get_confidence()
if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
self.logger.debug('%s confidence = %s, we have a winner',
charset_name, confidence)
self._state = ProbingState.FOUND_IT
elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
self.logger.debug('%s confidence = %s, below negative '
'shortcut threshhold %s', charset_name,
confidence,
self.NEGATIVE_SHORTCUT_THRESHOLD)
self._state = ProbingState.NOT_ME
return self.state
def get_confidence(self):
r = 0.01
if self._total_seqs > 0:
r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
self._total_seqs / self._model['typical_positive_ratio'])
r = r * self._freq_char / self._total_char
if r >= 1.0:
r = 0.99
return r