œ_#ÁÕ§TE NAŒ“KeÉ:”(åŽÖJÞùY’‚ñùž7; «]Û ý`8g“¯B© jdÖÖ¸ðzœ¸¦4Ç3Kó^(ÍÖ¼ Õ€pvìwšõB4df$Èü^0˜…åÌC$#2FŽÑ§±¦ÛZ/÷š&m£ñzÒÖ ’.Î]!Î;ƒ(Õ–¢d/—#Kª+tZyuÏB>NÛÖ†(¸ŒSà'³„Y˜´-_•¦¼´˜OlNK§¶ÒàŠˆTHµƒeTPå·fïM’…þuÏÍüp6دªE£åü‡ZØ'CKF#â«;‹eyO Qp„†l"ö1èíÙP ÏŒúl! BÝ2ñª•_VÁÉ÷3eu`–F¸ìI--ö<¿žë¯4õ캿¢)34Å{wMÉ2ÆÖFŸ¥`e9Ú¶¸P‡.”FÔï rY ‚²ÈTB,{ÛœéJ}«àQ4¹0Rû4D‚B§S‘ dO•v¾„™Sן¯3FeŸ™«+ÓâwH dÕÛÌì·P4ë&¥#rÜÉ Ù¦ê†ý·xòqk¯2,¹§™E\ék‚×Sá”ÚºÙ⺷ö£6…à ʾ qSá³Å|;àû}4Ÿ($â¹VY~óÍ!èÜÒŒËX½Ù1j‚VíÍŸš³+œ]«½g{_{/vµ½\¢¶vÉWKÿ:ñám½ ¥ S²x‘t ŽšÝÙÿÀÇ^ný PK IW™k‚½÷ á _rels/.relsUT dìd dìd dìd’ÏNÃ0‡ï{ŠÈ÷ÕÝ@¡¥» ¤Ý*`%îÑ&QâÁöö‚J£ì°cœŸ¿|¶²ÙÆA½rL½wVE Šñ¶w†çúay * 9Kƒw¬áÈ ¶ÕbóÄIîI]’Ê—4t"á1™ŽGJ…ìòMããH’±Å@æ…ZÆuYÞ`üÍ€jÂT;«!îì T}|Û7MoøÞ›ýÈNN<|v–í2ÄÜ¥ÏèšbË¢Ázó˜Ë )„"£OÏ7ú{ZYÈ’yÞç#1'tuÉM?6o>Z´_å9›ëKÚ˜}?þ³žÏÌ·N>fµx PK IWª½e ¢ U € word/document.xmlUT dìdPK IWþË3” z €J¢ word/settings.xmlUT dìdPK IWC‡{š' ƒ €¤ docProps/custom.xmlUT dìdPK IW츱=Œ €‡¥ [Content_Types].xmlUT dìdPK IWV%ë±" €U§ docProps/app.xmlUT dìdPK IW€RŒ 3 €¶¨ docProps/core.xmlUT dìdPK IWkòDn ô €ª word/_rels/document.xml.relsUT dìdPK IW;$î €Î« word/fontTable.xmlUT dìdPK IW+åäz] ÷. €ý¬ word/numbering.xmlUT dìdPK IW¤2×r- ¿ €›° word/styles.xmlUT dìdPK IWMFÒ ø €´ word/header1.xmlUT dìdPK IWF— T e €· word/media/image1.jpegUT dìdPK IW!Yéáå €°Ë word/media/image2.pngUT dìdPK IW°Àºë ú €ÙÌ word/media/image3.pngUT dìdPK IW$“†ª L €Î word/footer1.xmlUT dìdPK IWzaGôM €ñÑ word/footer2.xmlUT dìdPK IW–µâº P €}Õ word/theme/theme1.xmlUT dìdPK IW™k‚½÷ á €{Û _rels/.relsUT PK ! bîh^ [Content_Types].xml ¢( ¬”ËNÃ0E÷HüCä-Jܲ@5í‚Ç*Q>Àēƪc[žiiÿž‰ûB¡j7±ÏÜ{2ñÍh²nm¶‚ˆÆ»R‹ÈÀU^7/ÅÇì%¿’rZYï @1__f› ˜q·ÃR4DáAJ¬h>€ãÚÇV߯¹ªZ¨9ÈÛÁàNVÞ8Ê©ÓãÑÔji){^óã-I‹"{Üv^¥P!XS)bR¹rú—K¾s(¸3Õ`cÞ0†½ÝÎß»¾7M4²©ŠôªZÆk+¿|\|z¿(Ž‹ôPúº6h_-[ž@!‚ÒØ Pk‹´2nÏ}Ä?£LËð Ýû%áÄßdºždN"m,à¥ÇžDO97*‚~§Èɸ8ÀOíc|n¦Ñ äEøÿöéºóÀBÉÀ!$}‡íàÈé;{ìÐå[ƒîñ–é2þ ÿÿ PK ! µU0#ô L _rels/.rels ¢( ¬’MOÃ0†ïHü‡È÷ÕÝBKwAH»!T~€Iܵ£$Ý¿'TƒG½~üÊÛÝ<êÈ!öâ4¬‹;#¶w†—úqu *&r–Fq¬áÄvÕõÕö™GJy(v½*«¸¨¡KÉß#FÓñD±Ï.W ¥†=™ZÆMYÞbø®ÕBS톰·7 ê“Ï›×–¦é ?ˆ9LìÒ™ÈsbgÙ®|Èl!õùUSh9i°bžr:"y_dlÀóD›¿ý|-NœÈR"4ø2ÏGÇ% õZ´4ñËyÄ7 ëÈðÉ‚‹¨Þ ÿÿ PK ! Q48wÛ — xl/workbook.xml¤UÙnâ0}iþ!cñ‡ *–¢AšVU×$dC¬&vÆv UÕŸë@XÊK§/¹p|Žï¹N÷b“¥Ö •Š ÞC¸î"‹òHÄŒ¯zèá~b·‘¥4á1I§=ôJºèÿüÑ] ù¼âÙ ®z(Ñ:GE ͈ª‹œrˆ,…̈†©\9*—”Ä*¡Tg©ã¹nàd„q´Eåg0ÄrÉ":Q‘Q®· ’¦D}•°\UhYô¸ŒÈç"·#‘å ±`)Ó¯%(²²(œ®¸d‘‚ì nZ w v¡ñª• t¶TÆ")”Xê:@;[Ògú±ë`|²›ó=ø’ïHúÂL÷¬dðEVÁ+8€a÷Ûh¬Uz%„Íû"ZsÏÍCýî’¥ôqk]‹äù5ÉL¦Rd¥Dé˘i÷P ¦bM/|dÉ",…¨çãFNoçiûéë>aêiçsó#ðÄ ÕTr¢éHp ÜIú®ÝJìQ"ÀÜÖ-ý[0I¡¦ÀZ Z…d¡nˆN¬B¦=4 g %PDF-1.4 %âãÏÓ 3 0 obj << /Linearized 1 /L 422775 ÿØÿà JFIF ÿÛ C ÿÛ C ÿÀ X" ÿÄ ÿÄ H !1A"Qaq2‘¡#±ÁBRÑ3Cbrá$S‚¢²ð4ñ%6DTc’ÂsÿÄ ÿÄ = !1AQ"aq‘Á2R¡±BÑð#3br’²4á$‚¢ÂñÿÚ ? áHBßÝ`„! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! ! stream
B
� f�P � @ s8 d Z ddddddddd d
ddgZd
dlZd
dlZd
dlZd
dlmZ d
dlmZ d
dl m
Z
d
dlmZm
Z
G dd� de�Zd5dd�Zdd� Zdd� Zdd� Zdd� Zdd� Zd d!� Zd"d#� Zd6d%d&�Zd'd
� Zd(d� Zd)d� Zd*d� Zd+d� Zd7d-d �Zd.d� Zd8d/d0�Z d9d1d�Z!d:d2d�Z"d;d3d�Z#d<d4d�Z$dS )=aq
Basic statistics module.
This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.
Calculating averages
--------------------
================== =============================================
Function Description
================== =============================================
mean Arithmetic mean (average) of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
================== =============================================
Calculate the arithmetic mean ("the average") of data:
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625
Calculate the standard median of discrete data:
>>> median([2, 3, 4, 5])
3.5
Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
2.8333333333...
This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...
Calculating variability or spread
---------------------------------
================== =============================================
Function Description
================== =============================================
pvariance Population variance of data.
variance Sample variance of data.
pstdev Population standard deviation of data.
stdev Sample standard deviation of data.
================== =============================================
Calculate the standard deviation of sample data:
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
4.38961843444...
If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5
Exceptions
----------
A single exception is defined: StatisticsError is a subclass of ValueError.
�StatisticsError�pstdev� pvariance�stdev�variance�median�
median_low�median_high�median_grouped�mean�mode�
harmonic_mean� N)�Fraction)�Decimal)�groupby)�bisect_left�bisect_rightc @ s e Zd ZdS )r N)�__name__�
__module__�__qualname__� r r �//opt/alt/python37/lib64/python3.7/statistics.pyr b s c C s� d}t |�\}}||i}|j}ttt|��}xRt| t�D ]D\}} t||�}x0tt | �D ]"\}}|d7 }||d�| ||<